
CASIO FZ DATA TRANSFERS

Jeff McClintock (jeffm@iconz.co.nz)

This text describes the structure of FZ dump data and dump procedure.

If you find errors, please let me know.

Overview.

Block Structure
BANK DATA

VOICE DATA

WAVE DATA

EFFECT DATA

PC DATA DUMPS TO AN FZ
Overview

header detail

High Speed Port

MIDI

Storing FZ data on PC disk

High Speed Port details

Overview.
A PC can send and receive (dump) data from an FZ sampling synthesizer. The dump contains the raw

sample data and the sampler's 'housekeeping' information.

 Dumps contain up to 5 types of information:

1.A header, This describes the contents and size of the data to follow. The format of the header depends on

the situation. MIDI dumps have a different header than port dumps.

2.Bank data, Contains parameters of one or more banks. e.g. which voices comprise a bank.

3.Voice data, Contains the parameters of one or more voices, e.g. envelope settings.

4.Wave data, Actual 16 bit raw sample data.

5.Effect data, contains any FZ settings not relating directly to a voice or bank. e.g. master volume, foot

pedal settings. Effect data starts 960 bytes into a block.

Data is always sent in BLOCKS. Blocks are 1024 bytes in size. Each block can only contain 1 type of data

(bank, voice, wave etc.). Extra information (block headers, checksum) may be 'wrapped' around each

block, but is discarded as each block is received.

Example

A simple VOICE DUMP, 1 voice. All blocks are the same size except the header. The actual sample data is

spread across several WAVE blocks. The last block is padded out to 1024 bytes size. Blocks are sent in

this order.

[HEADER]

[VOICE BLOCK]

[WAVE BLOCK]

[WAVE BLOCK]

[WAVE BLOCK]

[WAVE BLOCK] 'total of 4096 bytes sample data (2048 samples)

A full dump

[HEADER]

[BANK BLOCK] ' 1st bank

[BANK BLOCK] ' 2nd bank

[VOICE BLOCK] ' 4 voices

[VOICE BLOCK] ' 4 more voices

[WAVE BLOCK]

[WAVE BLOCK]

[WAVE BLOCK]

[WAVE BLOCK]

[WAVE BLOCK] 'sample data. 8 voices worth. Concatenated

an effect dump

[HEADER]

[EFFECT BLOCK] Effect data starts 960 bytes into the block.

Block Structure

BANK DATA
Each bank uses 656 bytes of data leaving the remainder of the block unused.

This is the data accessed by [EDIT BANK] on the FZ.

Here is the layout of the data in a 'C' language format. Beware, your C compiler may have different size

'short', 'int', or 'long' data types.

#define MAXV 64 // Maximum number of voices

unsigned int bstep; // 0-64 Number of voices used in the bank

unsigned short hwid[MAXV]; // Hi-Note settings (MIDI note number)

unsigned short lwid[MAXV]; // Lo-Note settings (MIDI note number)

unsigned short htc[MAXV]; // 1-127 Velocity split hi

unsigned short ltch[MAXV]; // 1-127 Velocity split lo

unsigned short cent[MAXV]; // Original note (MIDI note number)

unsigned short mchn[MAXV]; // 0-15 Recieve MIDI channel

unsigned short gchn[MAXV]; // Each bit represents an 'individual output'

unsigned short bvol[MAXV]; // 1-127 Area volume (Usually 127)

unsigned int vp[MAXV]; // 0-63 Voice number to use in area

char name[14]; // Bank name, last two bytes should always be 0

What does this all mean?;

short - A binary value stored in 1 byte

int - A binary value stored in 2 bytes

long - A binary value stored in 4 bytes

unsigned - only positive values

char - ASCII codes

[MAXV]- means that there are 64 of each piece of data.

// - preceedes a comment

VOICE DATA
Each voice uses 192 bytes of data. Each VOICE block can contain 1 to 4 voices. When a block contains

more than 1 voice the voices are aligned on 256 byte boundaries. eg voice 1 data starts at byte 0 and ends at

byte 191, voice 2 data starts at byte 256, and ends at 447.

 All parameters default to 0 unless otherwise stated.

long wavst; // Sample data start address

long waved; // Sample data end address

long genst; // Sample play start address

long gened; // Sample play end address (usually =waved - 2)

int loop; // 0000h No waveform,

 // 01d7h Normal sound,(default)

 // 101dh Reversed,

 // 2014h Cueing sound (played with WHEEL),

 // 0013h Synthesised waveform.

 // FZ supports up to 8 loops

short loop_sus; // 0-8 sustain loop, 8 = No sustain loop

short loop_end; // 0-8 last loop, 8 = execute all loops

long loopst[8]; // Loop starts, upper 8 bits are loop fine settings (set =gened for unused loop)

long looped[8]; // Loop ends, MSB = Skip or Trace (set =gened for unused loop)

int loopxf[8]; // 0-1023 Loop cross fade time

unsigned int looptm[8]; // 1-1022 Loop time 16 ms to 16 s (default is 64), 1024 = continuous loop,

 // 1023 = loop during

sustain

int dcp; // 0-255 loop pitch correction times 1/256 semitone

short dcf; // 0-127 Filter cut off frequency

short dcq; // 0-127 Filter resonance (Q) lower 3 bits ignored

 // The FZ has 8 stage envelopes (rate/level type)

 // A good default is to set all dca_rate[] to 0xc0, and dcf_rate[] to 0x90

 except for dca_rate[0]=0x7f,dcf_rate[0]=0x7f,

 dcf_stop[0] to 0xff , dca_stop[0] to 0xff

short dca_sus; // 0-7 Sustain section # on DCA envelope

short dca_end; // 0-7 End section # on DCA envelope (default to 7)

short dca_rate[8]; // 0-127 Envelope rates MSB = direction up or down

unsigned short dca_stop[8]; // 0-255 Envelope section end level

short dcf_sus; // 0-7 Sustain section # on DCF envelope

short dcf_end; // 0-7 End section # on DCF envelope (default to 7)

short dcf_rate[8]; // 0-127 Envelope rates MSB = direction up or down

unsigned short dcf_stop[8]; // 0-255 Envelope section end level

unsigned int lfo_delay; // 0-65535 LFO Delay time 2 ms steps

unsigned short lfo_name; // 0-Sine, 1-Saw up, 2-Saw down, 3-triangle,4-rectangle, 5 random.

MSB=phase sync (default MSB =1)

unsigned short lfo_atck; // 1-127

short lfo_rate; // 0-127 (default to 0x40)

short lfo_dcp; // 0-127 LFO effect on Pitch

short lfo_dca; // 0-127 LFO effect on amplitute

short lfo_dcf; // 0-127 LFO effect on filter

short lfo_deq; // 0-127 LFO effect on filter Q

short vel_deq_kf; // -127 to 127 ,velocity effect on filter Q

short dca_kf; // DCA amplitude Key follow

short dca_rs; // DCA rate Key follow

short dcf_kf; // DCF amplitude Key follow

short dcf_rs; // DCF rate Key follow

short vel_dca_kf; // -127 to 127 Key Velocity effect on DCA envelope amplitude (default to 0x30)

short vel_dca_rs; // -127 to 127 Key Velocity effect on DCA envelope rate

short vel_dcf_kf; // Velocity effect on filter envelope amplitude

short vel_dcf_rs; // Velocity effect on filter envelope rate

unsigned short hwid; // Hi note (MIDI note number) (default to 0x60)

unsigned short lwid; // Low note (MIDI note number)(default to 0x24)

unsigned short cent; // Original note (MIDI note number)(default to 0x48)

unsigned short samp; // sampling freq 0 - 36khz, 1 - 18khz, 2 - 9khz

char name[14]; // ASCII name. last 2 bytes always 0

EFFECT DATA

struct effectdata

{

short bend; // bender depth

short mvol; // master volume

short suss; // sustain switch ON/OFF

short mod_lfp; // modulation to lfo pitch

short mod_lfa; // lfa amp

short mod_lff; // lfo filter

short mod_lfq; // lfo filter q

short mod_dcf; // filter offset

short mod_dca; // amp offset

short mod_dcq; // filter q offset

short fot_lfp; // foot volume to..

short fot_lfa; //

short fot_lff; //

short fot_lfq; //

short fot_dca; //

short fot_;dcf //

short fot_;dcq //

short aft_lpf; // after touch to..

short aft_lfa; //

short aft_lff; //

short aft_lfq; //

short aft_dca; //

short aft_dcf; //

short aft_dcq; //

};

WAVE DATA

This is simply 16 bit sample data, signed.

PC DATA DUMPS TO AN FZ

Overview

1 - PC sends 'REMOTE CODE' (prepare for transfer), can be LOAD, SAVE, MERGE, VERIFY

2 - PC waits 1 second

3 - PC Sends 'OPEN CODE' This dump header describes the data blocks

3 - PC Sends data blocks

This assumes the FZ is set to [REMOTE MODE], you can skip step 1 and 2 if you

use [LOAD VOICE] on the FZ.

 When using MIDI, there is a handshaking protocol to ensure all data arrives ok. The FZ

acknowledges each packet of data. With the high speed port, there is only low-level hardware handshaking.

header detail

High Speed Port

REMOTE CODE (PORT)

17 bytes of data

[7F][][][][][][eb][ev][sta][mod][][][][][][][sum]

OPEN CODE (PORT)

17 bytes of data

[sta][1L][1H][Bn][Vn][WL][WH][eb][ev][][][][][][][][sum]

[7F] - one byte of data, hexadecimal value 7F (127 decimal)

[] - one byte of data, doesn't matter what (typically 0)

[eb] - The bank number to dump ie 0-7, 0x7f means dump current bank

[ev] - The voice number to dump ie 0-63, 0x7f means dump current voice

[sta] - Type of dump, 0 - FULL, 1 - VOICE, 2 - BANK, 3 - EFFECT

[mod] - 0 - SAVE, 1 - LOAD, 2 - MERGE, 3 - VERIFY

[sum] - Checksum, Add up total of all bytes, logical AND with 0xff

 (255), subtract from 0x100 (256)

 'C' language example: checksum = 256 - (checksum & 255);

[1L][1H]- Total number of blocks to follow, split into high and low bytes

[Bn] - Number of banks

[Vn] - Number of voices

[WL][WH] - Total number of blocks of wave data (samples), split into high and low bytes

When sending an effect dump, Bn, Vn, and WL/WH are all zero (0).

Data is then sent in blocks (1024 bytes) with the addition of a checksum at the end of each block.

MIDI
When transmitting data over MIDI, each block is further divided into packets.Each packet sent to the FZ

over MIDI has a SYSEX HEADER, and an end-of-sysex byte.

The Casio FZ MIDI PACKET HEADER

[F0][44][02][00][7n]

7n - the 'n' represents the midi channel. 0=chan 1.

The end of each packet must have [F7]. Each packet of data is acknowledged by a message from the FZ;

REMOTE CODE (MIDI)

11 bytes of data (shown in hexadecimal)

[F0][44][02][00][7n][7F][eb][ev][sta][mod][F7]

OPEN CODE (MIDI)

16 bytes of data

[F0][44][02][00][7n][70][sta][Bn][Vn][W0][W1][W2][W3][eb][ev][F7]

These contains much the same info as the PORT codes. Note that 2-byte values have to be split into 4

nybles (4 bits each).

Each packet of data is then sent, 64 bytes of data at time. Each byte is split into nybles when sent over midi.

So 64 bytes of data = 128 bytes over MIDI.

[F0][44][02][00][7n][74][128 bytes of data][checksum][F7]

To calculate checksum. Add up the total of all data bytes, subtract from 256 then logical 'AND' with 127.

Example in 'C'

checksum &= 255;

checksum = (256 - checksum) & 127;

Each time the FZ receives a packet, it replies

[F0][44][02][00][7n][72][F7]

, or if there was an error

[F0][44][02][00][7n][73][F7] (second to last byte changes).

Once the entire dump is complete, the FZ sends a ‘Close’ command

[F0][44][02][00][7n][71][F7]

Storing FZ data on PC disk

FZDUMP stores data on disk much the same as it is received. The data is stored in blocks of 1024 bytes.

The header describing the data is stored starting at 1000 bytes into the file (taking advantage of an unused

section of the first block). The file has the extension .FZF (Full dump), .FZB (Bank dump), or .FZV (Voice

Dump). The file extension is redundant, as the file header also indicates a full dump (bn > 1), bank dump

(bn = 1) or voice dump (bn = 0).

struct fz_file_header {

 long indicator; /* FZCom file indicator (always = 476549224) 00 */

 short version; /* FZCom file format version no. (always = 1) 04 */

 unsigned char status; /* Type of file (Full:0, Voice:1 Bank:2, ,Effects:3) 05 */

 unsigned char bn; /* Number of banks in this file 06 */

 unsigned char vn; /* Number of voices in this file 07 */

 unsigned char dum2; /* unused? (set to 0)*/

 short block_count; /* Number of blocks in the file (1 block = 1024 bytes) 08 */

 short wn_block_count; /* Number of PCM data blocks 0A */

 short unused; /* Reserved (set to 0) 0C */

};

Casio FZ to PC High Speed Port - Low Level Details

PC and FZ pin-outs
Note: I am using some PC pins for different purposes than intended (standard use in brackets)

 FZ High-Speed Port PC Parallel Port
 DATA0 1 2 DATA0

 DATA1 3 3 DATA1

 DATA2 5 4 DATA2

 DATA3 7 5 DATA3

 etc etc

 DATA7 15 9 DATA7

 STB 19 1 STROBE

 STBO 22 10 STROBE (ACK)

 ACK 21 16 ACKO (INIT)

 ACKO

 BUSY 24 17 BUSYO (SEL)

 BUSYO 25 11 BUSY

 GND 2 25 GROUND

FZ to FZ cable pin-outs. DO NOT EVER CONNECT THIS TO A PC

 FZ High-Speed Port FZ High-Speed Port
 DATA0 1 1 DATA0

 DATA1 3 3 DATA1

 DATA2 5 5 DATA2

 DATA3 7 7 DATA3

 etc etc

 DATA7 15 15 DATA7

 STB 19 22 STROBE

 STBO 22 19 STROBE (ACK)

 ACK 21 8 ACKO (INIT)

 ACKO 8 21

 BUSY 24 25 BUSYO (SEL)

 BUSYO 25 24 BUSY

 GND 2 2 GROUND

For general information on programming the PC parallel port see ’Interfacing the IBM PC Parallel Printer

Port - Zhahai Stewart’ (Available on the WWW)

Signals.

Signal line PC Pin Register bit Notes

TRISTATE NA C4 Sets PC Port to input mode, all data pins enter a high-impedance state. This only

works on bi-directional ports. You must not connect an FZ to the PC unless the

port is tri-stated. If you do not understand this point, DON’T try it.

BUSYO 17 C3 (inverted) Indicates PC is not ready to receive data

ACKO 16 C2 (inverted) Set FZ’s direction of data transfer (ACK low sets FZ to tri-state mode)

STROBEO 1 C0 Pulsing this tells FZ to accept 1 data byte

BUSY 11 S7 Tells PC, FZ has accepted a byte

STROBE 10 S6 Tells PC to accept 1 byte (Via an interrupt).

Low level data transfer details

Here is a brief overview of how to transfer data to an FZ. The timing is very critical, you must use an

interrupt routine to receive data. You must disable all interrupts when sending data.

Because the FZ was not designed to talk to a PC, some of it’s signals are inverted from what you would

expect (eg the strobe line). So the PC interrupt is triggered on the trailing edge of the strobe signal, not the

leading edge. This means you don’t get the first byte of any data transfer to the PC (you get a 0 byte

instead). Each block of data from the FZ has a checksum. You can use this to recover the ‘lost’ first byte.

If both the FZ and the PC try to send data at the same time, you will destroy your PC or FZ port (or both).

A better way would be to make some type of buffer circuit to prevent this (don’t ask me how). I have tried

various resistors in the data lines, but they make the transfer unreliable. I now use no resistors (I MUST

unplug the cable when not running FZ-DUMP).

For an example of how to do this see FZ-DUMP for DOS source code at:

www.iconz.co.nz/~jeffm/fzdump.htm

The relevant files are ‘port_io.cpp’ for the low level stuff, and ‘fz_port.cpp’ for the high level stuff.

Preparing PC to receive data

prepare PC port for input, and FZ port for output:

TRISTATE data lines

raise ACK

clear FZ’s output buffer

lower BUSY

small time delay (approx. 2 milli second)

raise BUSY

Sequence of events receiving 1 byte FZ to PC

PC lowers BUSY

FZ Places DATA on outputs

FZ pulses STROBEOUT (0.25 micro sec)

PC raises BUSY

PC reads DATA off inputs

Preparing PC to receive data

lower ACK

lower BUSY

lower STROBE

Sequence of events sending 1 byte PC to FZ

PC Places DATA on outputs

PC raises BUSYO

PC raises STROBO

PC waits for FZ to raise BUSY

FZ reads DATA off inputs

PC lowers STROBEO

PC lowers BUSY

PC waits for FZ to lower BUSY

Written by Jeff McClintock

Last Updated : 16/5/1999

Disclaimer:

This may have errors. If you connect your FZ to your PC wrongly, you might destroy it.

