Service Manual

B PARTS LIST
(without price)

JUNE 1985

CAUTION:

When the connector (from the batteries) is disconnected, all the sound data in the Memory Bank are cleared. When this happens, initialize the unit by the following procedures.

1. Turn the power switch off and press INITIALIZE button.
2. Turn the power switch on, then the display indicates;

3. While pushing INITIALIZE button, press YES button on the data entry section of the panel. All the Memory Bank data are initialized, then the display shows:

CONTENTS

1. SCHEMATIC DIAGRAM 1
1-1. Main PCB (A) M5153-MA1M 1
1-2. Main PCB (B) M5153-MA1M 2
1-3. Stereo Chorus Circuit PCB M5153-MA2M 3
1-4. MIDI and MT Control PCB M5153-MA3M 4
1-5. Amp. Block PCB M5153-AS1M 5
1-6. LED Drive Circuit PCB M5153-MA4M 6
1-7. Panel Block (A) PCB M5153-CN1M 7
1-8. Panel Block (B) PCB M5153-CN2M 8
1-9. Modulation Switch PCB M5153-CN3 9
1.10. Power Supply Circuit PCB M5153-PS1, PS2 10
1-11. Keyboard (1) PCB M416-KY1 11
1-12. Keyboard (2) PCB M416-KY2 12
1-13. Keyboard PCB M425-KY3 13
2. WIRING DIAGRAM 14
3. PCB VIEW \& MAJOR CHECKPOINT 16
3-1. PCB M5153-MA1M 16
3.2. PCB M5153-MA2M 17
4. MAJOR WAVEFORMS 18
5. BLOCK DIAGRAM 21
6. DIGITAL CIRCUIT BLOCK DIAGRAM 22
7. MAIN CPU (μ PD7811-180) 23
8. SUB-CPU (μ PD7811-204) 24
9. MAIN RAMS \& ROM ACCESS 26
10. SUB-RAMS \& ROM ACCESS 27
11. ACCESS TO MUSIC LSI 28
12. CPU INTERFACE (MB64H173) 29
12-1. Function of Each Block 30
12-2. Data Transfer Procedures 31
13. KEY MATRIX 35
14. LED DRIVING CIRCUITS 36
15. ANALOG CIRCUIT BLOCK DIAGRAM 38
16. MUSIC LSI (μ PD933) 39
17. DAC (Digital to Analog Converter) 40
18. EXPANDER CIRCUIT 41
19. SAMPLE \& HOLD CIRCUIT 43
20. STEREO CHORUS CIRCUIT 44
20-1. Three-Phase LFO (Low Frequency Oscillator) 45
20-2. VCO (Voltage Controlled Oscillator) 46
20-3. BBD (Bucket Brigade Device) 47
20-4. Compressor and Expander Circuits 48
21. VOLUME CONTROL CIRCUIT 49
22. RESET CIRCUIT 50
23. MIDI \& MT INTERFACE CIRCUITS 51
23-1. MIDI Interface Circuit 51
23-2. MT Interface Circuit 52
24. ADJUSTMENT 53
24-1. DAC Offset Voltage 53
24-2. Volume Adjustment 53
PARTS LIST 55
EXPLODED VIEW 69

1. SCHEMATIC DIAGRAM

1-1. Main PCB (A) M5153-MA1M

1-9. Modulation Switch PCB M5153-CN3

2. WIRING DIAGRAM

NOTE: 1. Wire Color Codes

R : Red	W: White	BL: Blue
Y: Yellow	GR: Green	PP: Purple
BK: Black	BR: Brown	$\mathrm{O}:$ Orange
GY: Gray	PK: Pink	$E:$ Shielded wire

2. Terminal Readings

Connected to PCB MA-3M through a brown wire

Connected to Connector D pin 2 on PCB AS-1M
3. Voltage Levels

3. PCB VIEW \& MAJOR CHECKPOINT

3-1. PCB M5153-MA1M

4. MAJOR WAVEFORMS

Notes: Photographs marked (M) show stored waveforms in a memory scope.
The analog waveforms were observed via a 28 Kohm resistor.

(1)
μ PD7811 clock pulse PCB M5153-MA1M 74HCU04-1 pin 6 $0.1 \mu \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.

DOE
PCB M5153-MA1M μ PD933 pin 22
$10 \mu \mathrm{~s} / \mathrm{div}$., $5 \mathrm{~V} / \mathrm{div}$
Tone: Flute, Key: C4
(4) DAC output PCB M5153-MA1M TL082-こ pin 7 $10 \mu \mathrm{~s} / \mathrm{div} ., 5 \mathrm{~V} / \mathrm{div}$. Tone: Flute, Key: C4

(2) $\mu \mathrm{PD} 933$ clock pulse PCB M5153-MA1M $74 \mathrm{HCU} 04-2$ pin 2 $0.1 \mu \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.

(5) DOE and (6) DAC outputs

Same conditions as (3) and (4) except $2 \mathrm{~ms} / \mathrm{div}$. of sweep time and using a memory scope.

(7) DAC output

PCB M5153-MA1M
TL082-3 pin 7
$2 \mathrm{~ms} / \mathrm{div}$., $5 \mathrm{~V} / \mathrm{div}$.
Tone: Flute, Key: C4
(8) Expander Circuit output

PCB M5153-MA1M
TL082-3 pin 1
$2 \mathrm{~ms} / \mathrm{div}$., $0.5 \mathrm{~V} / \mathrm{div}$.
Tone: Flute, Key: C4

(11) Master LSI DOE signal PCB M5153-MA1M μ PD933-1 pin 22 $10 \mu \mathrm{~s} / \mathrm{div}$., $2 \mathrm{~V} / \mathrm{div}$.
(12) Master LSI SH signal PCB M5153-MA1M μ PD933-2 pin 23 $10 \mu \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.

(9) DAC output and (10) Expander Circuit output
Same conditions as (7) and (8) except using a memory scope.

(13) Master LSI SH signal

PCB M5153-MA1M
μ PD933-1 pin 23
$0.1 \mu \mathrm{~s} / \mathrm{div}$., $2 \mathrm{~V} / \mathrm{div}$.
(14) Sample \& Hold Circuit output

PCB M5153-MA1M
TL082-2 pin 7
$0.1 \mu \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.
Tone: Flute, Key: C7

(15) Master LSI SH signal

PCB M5153-MA1M
μ PD933-1 pin 23
$10 \mu \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.
(16)

Slave LSI SH signal PCB M5153-MA1M μ PD933-2 pin 23 $10 \mu \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.

(19)

Mixed 0.54 Hz and 6.1 Hz signals PCB M5153-MA2M

Anode of VCO input diode $1 \mathrm{~s} / \mathrm{div}$., $1 \mathrm{~V} / \mathrm{div}$.

(17) 0.54 Hz LFO output PCB M5153-MA2M
TC4069-1 pin 4
0.5s/div., 2V/div.
(18) 6.1 Hz LFO output

PCB M5153-MA2M
TC4069-1 pin 6
$0.5 \mathrm{~s} / \mathrm{div} ., 2 \mathrm{~V} / \mathrm{div}$.

(20) Filter A output

PCB M5153-MA2M
NJM4558-2 pin 7
$2 \mathrm{~ms} /$ div., $0.5 \mathrm{~V} / \mathrm{div}$.
(21) BBD output

PCB M5153-MA2M
MN3209-1 $\operatorname{pin} 7$
$2 \mathrm{~ms} / \mathrm{div}$., $0.5 \mathrm{~V} / \mathrm{div}$.

6. DIGITAL CIRCUIT BLOCK DIAGRAM

Function of each block:
MAIN CPU - Controls keys and switches scanning, sequencer, MIDI and cassette tape player.
SUB-CPU - Mainly controls Music LSIs.
CPU Interface - Interfaces between MAIN CPU and SUB-CPU.
Main RAM 1 - The first 2K bytes are for system execution and the rest of 6 K bytes store the sequencer data.
Main RAM 2 - Stores the sequencer data.
Sub-RAM 1 - Having 2K-byte capacity, stores tone data for Memory Banks A and B.
Sub-RAM 2 - System execution area.
Sub-RAM 3 - Stores data fro Memory Banks C and D.
7. MAIN CPU (μ PD7811-180)

PIN NO.	TERMINAL NAME	IN/OUT	FUNCTION
$1 \sim 8$	PAO (S) ~PA7 (S7)	IN/OUT	Data bus for LCD and RAM pack. PA0~PA3 also generate key common signals.
9	PBO (SYNC)	IN	Synchronous signal from CPU Interface (MB64H173)
10	PB1 (MT-0)	OUT	Serial data output for cassette tape
11	PB2 (INT)	OUT	SUB-CPU interrupt signal
12	PB3 (CONT)	IN/OUT	Control signal between MAIN and SUB-CPUs
13	PB4 (MT-I/O)	OUT	Remote control (start, stop) signal for cassette tape recorder
14	PB5 (B5)	OUT	LCD unit control signal
15	PB6 (B6)	OUT	LCD Driver LSI chip select signal
16	PB7 (B7)	OUT	LCD Driver LSI Read/ $\overline{\text { Write }}$ signal
17	PCO (M-OUT)	OUT	MIDI (Musical Instrument Digital Interface) data output
18	PC1 (M-IN)	IN	MIDI data input
19	PC2 (CE)	OUT	RAM Pack (option) chip select signal
20	PC3 (MT-1)	IN	Data input from cassette tape
$21 \sim 24$	PC4 ~ PC7	OUT	Metronome (timing signal for music recording) pitch signals
26	INT1	IN	Interrupt from SUB-CPU
28	$\overline{\text { RESET }}$	IN	Initializes the LSI's internal circuits at Power ON.
31	X1	IN	12 MHz clock pulse
32	VSS	IN	Logic ground (OV) source
33	AVSS	IN	Ground for the built-in ADC (Analog to Digital Converter)
34	ANO	IN	Bender wheel input. A voltage from the bender wheel is converted into digital data by a built-in ADC.
35	AN1	IN	Modulator wheel input. A voltage from the modulator wheel is converted into digital data by a built-in ADC.
42	VREF	IN	Reference voltage (+5 V) for the built-in ADCs

43	AVCC	IN	+5 V power source for the built-in ADCs
44	$\overline{\mathrm{RD}}$	OUT	Read signal. Drops to " L " when MAIN CPU reads data from the ROM and the RAMs.
45	$\overline{W R}$	OUT	Write signal. Drops to " L " when MAIN CPU writes data into the RAMs.
46	ALE	OUT	Address Latch Enable. When " H ", data bus D0 ~ D7 becomes address bus A0~A7.
$47 \sim 54$	PFO(A8) ~PF7(A15)	OUT	Upper address bus ($\mathrm{A} 8 \sim \mathrm{~A} 15$)
$55 \sim 62$	PD0(D0) ~PD7(D7)	IN/OUT	Data bus (D0~D7)
63, 64	VDD, VCC	IN	+5 V power source

8. SUB-CPU (μ PD7811-204)

PIN NO.	TERMINAL NAME	IN/OUT	FUNCTION
$1 \sim 8$	PAO(LO)~PA7(L7)	OUT	LED drive signals
9	PB0	IN	Data receive request from Master Music LSI
10	PB1	IN	Data receive request from Slave Music LSI
11	PB2	OUT	Master Music LSI chip select signal
12	PB3	OUT	Slave Music LSI chip select signal
13	PB4	OUT	Write enable signal for Music LSIs
14	PB5	OUT	ID (Interrupt Disable) signal. When SUB-CPU is busy, it sends ID signal to Music LSIs so as not to be interrupted.
15	PB6 (LDC)	OUT	Stays "H" level for approximately 830 milli- seconds after the power switch is turned on in order to avoid mis-lighting the LEDs at Power ON.
17	PC0 (TXD, L11)	OUT	LED drive signal
18	PC1 (RXD, SYNC)	IN	Synchronous signal from MAIN CPU
19	PC2 (SCK, CONT)	IN/OUT	Control signal between MAIN and SUB-CPUs
20	PC3 (INT2)	IN	Interrupt signal from Music LSIs 21
PC4 (T0)	OUT	Metronome envelope signal	
$22 \sim 24$	PC5(L8)~PC7 (L10)	OUT	LED drive signals 26
INT1	IN	Interrupt signal from MAIN CPU	

28	$\overline{\text { RESET }}$	IN	At Power ON, the terminal stays " L " level for a while in order to initialize the internal circuits.
31	X1	IN	12 MHz clock pulse
32	VSS	IN	Ground (0 V) power source
44	$\overline{\mathrm{RD}}$	OUT	Read signal. Drops to "L" when SUB-CPU reads data from the ROM, RAMs or Music LSIs.
45	$\overline{W R}$	OUT	Write signal. Drops to "L" when SUB-CPU writes data into the RAMs or Music LSIs.
46	ALE	OUT	Address Latch Enable. When " H ", data bus PD9 (DS0) ~ PD7 (DS7) becomes address bus AS0 ~ AS7.
47~54	PFO(AS15) ~ PF7 (AS8)	OUT	Upper address bus
55~62	PDO(DSO) ~ PD7 (DS7)	OUT	Data bus
63,64	VDD, VCC	IN	+5 V power source

The first 2 K bytes of Main RAM 1 are the data area for system execution and the rest of 6 K bytes and the whole 8 K bytes of Main RAM 2 are the data area for programmed music.
The capacity of Main ROM is 32 K bytes and contains the program for system execution.
The lower address bus AO ~ A7 is provided from CPU Interface LSI. When signal ALE from MAIN CPU rises to " H ", data bus (D0 ~ D7) becomes address bus (A0 ~ A7) in CPU Interface LSI. The upper address A8 ~ A15 is directly supplied from MAIN CPU.

Chip select signals are provided from signals A13 ~ A15:

A13	A14	A5	
L	L	H	Main RAM 1 chip selection
H	L	L	Main RAM2 chip selection
X	X	L	Main ROM chip selection

'LS138, 'S138 FUNCTION TABLE

INPUT					OUTPUT							
ENABLE		SELECT										
G1	G2*.	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	\times	\times	X	H	H	H	H	H	H	H	H
L	X	\times	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L		L	H	H	L	H	H	H	H	H	H
H	L	L	H	L.	H	H	L	H	H	H	H	H
H	L		H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L		L		H	H	H	H	H	L	H	H
H	L		H		H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

[^0]

TC5516AP is a 2 K -byte RAM while HN61364P is an 8K-byte ROM.
Sub-RAM 1 - Tone data area for Memory Banks A and B.
Sub-RAM 2 - Data area for system execution.
Sub-RAM 3 - Tone data area for Memory Banks C and D.

In the same procedures as for MAIN CPU, lower address bus ASO ~ AS7 is generated from data bus DSO ~ DS7 in CPU Interface LSI when signal ALE is " H ". Upper address signals A8 ~ A15 are provided from SUB-CPU directly.
Decoder 74LS138-2 generates chip selection signals and other control signals from signals AS11 ~AS15 as follows:

74LS138	74LS138													
	IN					OUT								
	A14	A15	A13	A12	A11	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7	
A15-G1 YO	L	H	L	L	L	L	H	H	H	H	H	H	H	Write strobe for Music LSIs
A14-G2 Y1	L	H	L	L	H	H	L	H	H	H	H	H	H	Data transfer: SUB-CPU \rightarrow MAIN CPU
$\overline{\mathrm{RD}} \cdot \overline{\mathrm{WR}}-\mathrm{G} 2 \mathrm{~B} \quad \mathrm{Y} 2$	L	H	L	H	L	H	H	L	H	H	H	H	H	Data transfer: MAIN CPU \rightarrow SUB-CPU
$A 11-A \quad Y 3$	L.	H	L	H	H	H	H	H	L	H	H	H	H	Data transfer: MAIN CPU \rightarrow SUB-CPU
A12-B Y4	L	H	H	L	L	H	H	H	H	L	H	H	H	MAIN CPU interruption
A13-C Y5	L	H	H	L	H	H	H	H	H	H	L	H	H	Sub-RAM 2 chip selection
Y6	L	H	H	H	L	H	H	H	H	H	H	L	H	Sub-RAM 1 chip selection
Y7	L	H	H	H	H	H	H	H	H	H	H	H	L	Sub-RAM3 chip selection

11. MUSIC LSIS ACCESS

CZ-5000 employs two Music LSIs, Master LSI and Slave LSI, which are controlled by SUB-CPU.

SUB CPU \Rightarrow Music LSI

1) Music LSI \Rightarrow SUB-CPU

Upon receipt of an interrupt signal,

12. CPU INTERFACE (MB64H173)

Internal block diagram of MB64H173

F/F 1 - Set by the clock pulse '0' and signal R2 from SUB-CPU, and generates signal SYNC which synchronizes MAIN and SUB-CPUs.

FUNCTION TABLE

INPUT					OUTPUT	
PRESET	CLEAR	CLOCK	D	Q	$\overline{\mathrm{Q}}$	
L	H	X	X	H	L	
H	L	\times	\times	L	H	
L	L	\times	\times	H^{*}	H^{*}	
H	H	\uparrow	H	H	L	
H	H	\uparrow	L	L	H	
H	H	L	\times	Q_{0}	$\overline{\mathrm{Q}}_{0}$	

Decoder 1 - Generates clock pulses for the latches from signals A0~A3, A14, A15, $\overline{R D}$ and $\overline{W R}$.

FUNCTION TABLE

ENABLE INPUT		SELECT INPUT			OUTPUT							
G1	$\overline{\mathrm{G}} 2^{*}$	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
\times	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L.	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

$* \overline{\mathrm{G}} 2=\overline{\mathrm{G}} 2 \mathrm{~A}+\overline{\mathrm{G}} 2 \mathrm{~B}$

Latch 1 - Converts MAIN CPU's data bus (D0 ~ D7) into address bus A0 ~ A7, and generates clock pulses ' 0 ' ~ ' 5 '.

Latch 2 - For the data transfer from MAIN CPU to SUB-CPU.
Latch 3 - Transfers the data from the pitch bender and modulator wheel to SUB-CPU.
Latch 4 - For the data transfer from SUB-CPU to MAIN CPU.
Latch 5 - Converts SUB-CPU's data bus (DS0 ~ DS7) into address bus ASO ~ AS7.
FUNCTION TABLE

	INPACH	LATCH)	
$\overline{O C}$	ENABLE C	D	OUTPUT
L	H	H	Q
L	H	L	H
L	L	X	L
H	X	X	Q_{0}

Latch 1 and 5

FUNCTION TABLE (EACH FLIP-FLOP)

INPUT			OUTPUT
$\overline{\mathrm{OC}}$	CLK	D	Q
L	\uparrow	H	H
L	\uparrow	L	L
L	L	\times	Q_{0}
H	X	\times	Z

Latch $2 \sim 4$

12-2. Data Transfer Procedures

(1) Pitch Bender \& Modulator \square SUB-CPU.
(1) Voltage level from the pitch bender or the modulator is converted into digital data in the CPU's builtin ADC (Analog to Digital Converter) and output from data bus (D0 ~ D7).
(2) The data is entered into CPU Interface LSI.
(3) Sending signal R1, SUB-CPU sets Latch 3 and reads data periodically.
(2) MAIN CPU \square SUB-CPU.
(1) Via Latch 1 and Decoder 1, MAIN CPU drops clock pulse ' 0 ' to " L " level. By clock pulse ' 0 ', F/F 1 is preset to rise signal SYNC.
(2) MAIN CPU puts data on data bus DO ~ D7, and at the same time, clock pulse ' 0 ' rises to " H " level.
At the rising edge of clock pulse ' 0 ', data from MAIN CPU is set in Latch 2.
(3) MAIN CPU interrupts SUB-CPU from terminal PB2, and simultaneously generates signal CONT from terminal PB3.
(4.) Generating signal R2 from Decoder 3, SUB-CPU reads the data from Latch 2 via data bus DSO ~ DS7.
(5) SUB-CPU sends signal ACK to MAIN CPU via Decoder 3 and F/F 2.

Upon receipt of signal ACK, MAIN CPU confirms that SUB-CPU has received the data and generates signal $\phi 16$ in Decoder 2.
(6) When all the data have sent to SUB-CPU by repeating the above procedures (1)~ (5), MAIN CPU drops signal CONT to " L ".
(7) Confirming that both CONT and SYNC are "L", SUB-CPU determines that all the data have been received.

(3) Sub-CPU $\underset{\square}{\square}$ MAIN CPU.
(1) In the same procedures as stated in the item (2), MAIN CPU sends "Request Command" that inquires SUB-CPU to transmit data.
(2) SUB-CPU puts data on the data bus DSO ~ DS7 and sets the data in Latch 4 by signal W1. SUB-CPU then presets F/F 2 by pulse $\phi 4$, causing signal ACK to be entered in MAIN CPU.
(3) Acknowledging that the data is set in Latch 4 by signal ACK, MAIN CPU generates clock pulse '2', causing the data from SUB-CPU to be put on MAIN CPU data bus D0 ~ D7.
(4) After receiving the data, MAIN CPU sends SUB-CPU an interrupt signal from terminal PB2, and by the interrupt signal, SUB-CPU confirms that the data is received by MAIN CPU.
(5) Repeating the above procedures (2) ~ (4), SUB-CPU sends the next data to MAIN CPU.

(4) Key and switch scanning

Receiving a key common signal from data bus, MAIN CPU discriminates a key or a switch input.

(1) From signals PAO ~ PA3 of MAIN CPU, 4-line to 16 -line decoder 74LS154P-1 generates key common signals $\mathrm{KCO} \sim \mathrm{KC14}$.
(2) When a key or a switch is hit, one of the input signals KIO~KI5 (for keys) or KI10 ~ KI15 (for switches) is entered in CPU Interface MB64H173.
(3) MAIN CPU generates the clock pulse '3' (for keys) or '4' (for switches), causing the tristate buffers to be opened.
(4) The input pulse is entered into data bus.
(5) Discriminating the contents of the data bus, MAIN CPU determines which key is hit.

INPUT						OUTPUT															
G1	G2	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H .	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	X	X	X	\times	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	x	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	\times	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

ヨ 114 M	$77 \forall$ ㅋㅋ ／ヨy $\forall \mathrm{dWO}$	$\exists \mathrm{N} \cap \perp$ yヨıS \forall W	$\begin{gathered} \exists \operatorname{SOdSN} \forall Y \perp \\ \lambda \exists> \end{gathered}$	$\begin{aligned} & \exists \exists \mathrm{O} / \mathrm{NO} \\ & \exists \square \text { פרום } \end{aligned}$	$\begin{gathered} \lrcorner \exists \mathrm{O} / \mathrm{NO} \\ \text { O } \perp \mathrm{N} \exists \mathrm{~W} \forall \perp \text { yod } \end{gathered}$							カレコ入
IGIW	O70s	¢ヨONヨกOヨS	117dS人ヨ＞	$\begin{aligned} & \text { XIW } \\ & \text { ZNOL } \end{aligned}$	$7 \forall W$ OON	10					20	عしコ＞
$\begin{gathered} \nexists \mathrm{O} / \mathrm{NO} \\ \text { NOI } \perp \forall 7 \cap \mathrm{COW} \end{gathered}$												てIJ×
$\begin{gathered} \text { (SNS) } \\ M S \text { SOO } \end{gathered}$	$\begin{aligned} & \perp 0 \exists \perp 0 y d \\ & \text { 人प्yOWヨW } \end{aligned}$	$\wedge \exists y$	GMJ	$\wedge \forall 7 \mathrm{~d}$	$d O \perp S$							いこ入
$\begin{gathered} 乙 \\ \times \forall \forall \forall \perp \end{gathered}$	ત્ર૭૪ப1	\exists WIL 7 $\forall \exists$ y 	$7 \forall \cap N \forall W$ 	वч03ヨy	คヨSヨy						10	OLכX
$\begin{gathered} 8 \\ \text { அ્ヤソ1 } \end{gathered}$	$\begin{gathered} L \\ \times \forall \forall \cup \perp \end{gathered}$		G 	$\begin{gathered} \stackrel{\nabla}{x} \\ \times 10 \forall y \perp \end{gathered}$	$\begin{gathered} \varepsilon \\ \underset{y}{\varepsilon} \forall \cup \perp \end{gathered}$	98	9\＃\forall	$9 \forall$	9\＃9	99	9\＃」	6 Јヤ
$\exists \mathrm{N} \cap \perp \mathrm{Bl}$	ヨ1ヨาヨロ	NMOO OdWヨ」	dn OdWヨ1	$1 \forall \exists d \exists \underline{y}$	ત્રЭヨНЭ ત્રכヤソ1	$9 \pm$	$9 \exists$	9\＃0	90	9\＃つ	93	8 Јヤ
$\begin{aligned} & \wedge N \exists \\ & \nearrow \forall O 0 \end{aligned}$	$\begin{aligned} & \exists \cdot \wedge \exists \gg \\ & \quad 乙 \quad \forall 00 \end{aligned}$	$\begin{aligned} & \text { ANヨ } \\ & \text { 乙 MOa } \end{aligned}$	$\begin{aligned} & \pm-\lambda \exists> \\ & \quad 乙 \text { Mכロ } \end{aligned}$	$\begin{aligned} & \text { ^Nヨ } \\ & \text { 乙 } 000 \end{aligned}$	$\begin{array}{r} \text { WYOJヨ } \wedge \forall M \\ 乙 ~ \supset O O \end{array}$	98	G\＃${ }^{\text {b }}$	GV	¢\＃－	99	9\＃」	Lכ＞
$\wedge N \exists$ $1 \forall 00$	$\begin{aligned} & \text { む人ヨ지 } \\ & \quad 1 \forall 00 \end{aligned}$	$\wedge \mathrm{N} \mathrm{\exists}$ 1 MOC	$\begin{aligned} & \pm \times \wedge \exists> \\ & \quad 1 \text { MOa } \end{aligned}$	$\wedge N \exists$ 1000	WとO－コ $\wedge \forall M$ 1000	Gy	Gヨ	9\＃O	GO	¢\＃О	93	9 Ј入
$\exists \mathrm{SION}$	ONIC			$\exists \wedge \forall \perp$ O	$\exists \mathrm{I}$ I $\forall 1 \perp$ INI	t8	$t \# \forall$	$\forall \forall$	も\＃	$\dagger \bigcirc$	囲」	¢ コ＞
	LW	OLNヨWVคบOd	30179	$\exists 9 N \forall \bigvee$ ONヨ8	Hıdヨa 00 W	†」	$\dagger \exists$	t\＃O	七0	七\＃	†O	ャコン
$\begin{aligned} & \square \forall 07 \nabla \\ & \exists \cap 7 \forall \wedge \end{aligned}$	$\exists \wedge \forall S$ $\exists \cap า \forall \wedge$	QNヨ LNIOd ANヨ	NIV」SOS LNIOd ANヨ	$\begin{aligned} & d \cap \nabla \\ & d \exists \perp S \wedge N \exists \end{aligned}$	NMOO $\mathrm{d} \exists \perp \mathrm{S} \wedge \mathrm{N} \mathrm{\exists}$	$\varepsilon \square$	\＆\＃\forall	$\varepsilon \forall$	£\＃Э	$\varepsilon \bigcirc$	を\＃」	ε Ј＞
t $\exists \mathrm{NO} \perp$	$\begin{gathered} \varepsilon \\ \exists N O \perp \end{gathered}$	$\begin{gathered} \text { 乙 } \\ \exists N O \perp \end{gathered}$	$\stackrel{\llcorner }{\exists \mathrm{NO} \perp}$	$\begin{aligned} & \text { Sヨ人 } \\ & \text { yOSU@ } \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \text { yOSy o } \end{aligned}$	£コ	£ヨ	£\＃О	$\varepsilon \square$	£\＃つ	ยว	乙 Ј入
$\begin{aligned} & g \cdot \gg N \forall G \\ & \quad \perp \exists S \exists y d \end{aligned}$	$\begin{aligned} & \forall->N \forall G \\ & \quad \perp \exists \mathrm{~S} \mathrm{\exists} \text { yd } \end{aligned}$	$\begin{gathered} 8 \\ \exists \mathrm{NO} \perp \end{gathered}$	$\underset{\exists N O \perp}{L}$	$\begin{gathered} 9 \\ \exists \mathrm{NO} \perp \end{gathered}$	$\begin{gathered} \mathrm{G} \\ \exists \mathrm{NO} \perp \end{gathered}$	28	て\＃\forall	てV	て\＃け	乙Э	て\＃」	L O＞
व•ㄱN $\forall 8$入YOWヨW	う－＞ 人 $40 W \exists$ W	$g \cdot>1 N \forall 8$ 드NW	\forall－$>1 N \forall 8$ LヨSヨyd	$\begin{aligned} & a \cdot \times \times N \forall G \\ & \quad \perp \exists S \exists y d \end{aligned}$		てJ	$2 \exists$	て\＃0	て○	て\＃つ	Z）	0 Ј入
GII＞	カー｜入	$\varepsilon レ I>$	で1＞	い1可	O1 I＞	GI＞	$\dagger \mid>1$	$\varepsilon \mid>$	$21 \times$	$11>$	$01>$	

14. LED DRIVING CIRCUITS

74LS174
FUNCTION TABLE
(EACH FLIP-FLOP)

INPUT			OUTPUT	
CLEAR	CLOCK	D	Q	$\overline{\mathrm{Q}} \uparrow$
L	\times	\times	L	H
H	\uparrow	H	H	L
H	\uparrow	L	L	H
H	L	X	Q_{0}	Q_{0}

74LS154P
FUNCTION TABLE
$H=$ high level (steady state)
$\mathrm{L}=$ low level (steady state)
$X=$ irrelevant
$\uparrow=$ transition from low to high level
$\mathrm{Q}_{0}=$ the level of Q before the indicated steady-state input conditions were established.

2	3	4	5	6	7	8	9

$1 / G 2$	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13
14	15																	

 $\begin{array}{lllllllllllllllllll}L & H & H & H & H & H & H & H & H & H & H & L & H & H & H & H & H & H & H\end{array}$ H Llllllllllllllllll $\begin{array}{lllllllllllllllllll}H & L & L & H & H & H & H & H & H & H & H & H & H & L & H & H & H & H & H \\ H\end{array}$ $H L H H$
\qquad H H L H H H H H H H
$\begin{array}{llll}\mathrm{H} & \mathrm{H} & \mathrm{H} & \mathrm{L} \\ \mathrm{H} & \mathrm{H}\end{array}$
H H H H
$\times \times \times \times H$
$\begin{array}{llllllllllllllllll}L & X & X & X & X & H & H & H & H & H & H & H & H & H & H & H & H & H\end{array} H$
high level, $L=$ low level, $X=$ irrelevant

Combining the signals $A 0 \sim A 3$, Decoder 4 generates signals $\phi 17 \sim \phi 19$ and $\phi 1 A \sim$ $\phi 1 \mathrm{D}$ which set Latches $5 \sim 11$.
For lighting the LED "NORMAL", MAIN CPU raises signal DO which is inverted to "L" level.

Then, MAIN CPU generates clock signal $\phi 17$ from signals $A 0 \sim A 3$.
$\overline{\mathrm{DO}}\left(=\right.$ " $\left.L^{\prime \prime}\right)$ is set in Latch 5 dropping signal L70 "L".
The LED "NORMAL" is lit when its anode is connected to VDL2 $(+5 \mathrm{~V})$.

Signal Conditions

These LEDs are controlled by SUB-CPU.
For example, when SUB-CPU wishes to light the "PRESET BANK-A" LED, it drops all the signals L8 ~ L11. Y0 output of Decoder 5 drops to " L ", causing the LED to be lit.
15. ANALOG CIRCUIT BLOCK DIAGRAM

Master and Slave Music LSIs provide 12-bit digital sounds for DAC (Digital to Analog Converter). By means of time sharing, DAC mixes the two different signals and converts into analog waveforms. To obtain a wide dynamic range of the amplitude, Music LSIs' outputs are contracted and are reformed into a proper waveform shape by Expander circuits. Sample \& Hold circuit removes a high frequency noise called as glitch contained in the DAC output.
Sample \& Hold Circuit also separates the Master and Slave waveforms.
16. MUSIC LSI (μ PD933)

PIN NO.	TERMINAL NAME	IN/OUT	FUNCTION
1~8	DB7 ~ DB0	IN/OUT	8 -bit data bus between Music LSIs and SUB-CPU
9	$\overline{C S}$	IN	Chip select terminal. At " L ", the LSI is designated by SUB-CPU.
10	$\overline{\mathrm{RD}}$	IN	Read data terminal. At " L ", the $L S I$ sends data to SUB-CPU.
11	$\overline{W E}$	IN	Write enable terminal. At "L", the LSI receives data from SUB-CPU.
12	$\overline{W S}$	IN	Write strobe terminal. SUB-CPU writes data into Music LSI at the rising edge of the signal.
16	M/S	IN	Master or Slave determination terminal. When "L", the LSI becomes Slave LSI while it becomes Master LSI when the terminal is " H ".
17	SYC	IN/OUT	Synchronous signal input/output terminal. The synchronous signal is sent from Master LSI to Slave LSI.
18	CLK	IN	4.48 MHz clock pulse input
21	RST	IN	Reset signal input. Normally the terminal stays "L". At power ON, the terminal rises to " H " level for a while and the internal circuits of the LSI are initialized.
22	DOE	IN/OUT	Data output enable terminal. At " H ", digital sound signals are output from Master LSI while Slave LSI outputs sound signal at "L" level.
23	SH	OUT	40 KHz sampling signal for Sample \& Hold circuit
25~27	DO1 ~ DO3	OUT	Control signals for Expander circuit
$28 \sim 39$	DO4 ~ DO15	OUT	12-bit digital sound signals
40	VDD	IN	+5 V power source

17. DAC (Digital to Analog Converter)

The two Music LSIs output different waveforms. When signal DOE is " H ", Master LSI outputs a waveform while Slave LSI outputs a waveform at "L" level of DOE.

18. EXPANDER CIRCUIT

In order to extend the dynamic range of the melody signal, a part of DAC output waveform is contracted and expanded by Expander Circuit.

In accordance with the voltage levels of the signals DO1, DO2 and DO3, one of the input channels is turned on.
By the resistors connected to each channel, the amplitude of DAC output varies from 1 to 1/16.

Combined resistances at each point are:
$\mathrm{ra}=\mathrm{R} 1(5 \mathrm{~K} \Omega)+\mathrm{R} 2(5 \mathrm{~K} \Omega)=10 \mathrm{~K} \Omega$
$\mathrm{rb}=$ Parallel connected ra $(10 \mathrm{~K} \Omega)$ and $\mathrm{R} 3(10 \mathrm{~K} \Omega)=5 \mathrm{~K} \Omega$
$\mathrm{rc}=\mathrm{rb}(5 \mathrm{~K} \Omega)+\mathrm{R} 4(5 \mathrm{~K} \Omega)=10 \mathrm{~K} \Omega$
$r d=$ Parallel connected rc $(10 \mathrm{~K} \Omega)$ and $\mathrm{R} 5(10 \mathrm{~K} \Omega)=5 \mathrm{~K} \Omega$
$r e=r d(5 K \Omega)+R 6(5 K \Omega)=10 \mathrm{~K} \Omega$
rf $=$ Parallel connected re $(10 \mathrm{~K} \Omega)$ and $\mathrm{R} 7(10 \mathrm{~K} \Omega)=5 \mathrm{~K} \Omega$
$r g=r f(5 K \Omega)+R 8(5 K \Omega)=10 K \Omega$

Each current value is:
$1=111+112$
$111=121+122$
$121=131+132$
Namely, $111=1 / 2$

$$
\begin{aligned}
& I 21=111 / 2=1 / 4 \\
& I 31=121 / 2=1 / 8
\end{aligned}
$$

Voltage level at each channel is:
Channel 0: $\mathrm{rg} \times \mathrm{I}=10 \mathrm{~K} \Omega \times \mathrm{I}$
Channel 1: re $\times 111=10 \mathrm{~K} \Omega \times 1 / 2$
Channel 2: $r c \times 121=10 \mathrm{~K} \Omega \times \mathrm{I} / 4$
Channel 3: $\operatorname{rax} \mathrm{I} 31=10 \mathrm{~K} \Omega \times \mathrm{I} / 8$
Channel 4: $\mathrm{R} 1 \times \mathrm{I} 31=5 \mathrm{~K} \Omega \times \mathrm{I} / 8=10 \mathrm{~K} \times \mathrm{I} / 16$

If input voltage is E :
Channel 0 input voltage is E.
Channel 1 input voltage is $E / 2$.
Channel 2 input voltage is $E / 4$.
Channel 3 input voltage is $E / 8$.
Channel 4 input voltage is $E / 16$.

Thus, output of DAC is expanded in accordance with the voltage levels of signals DO1, DO2 and DO3.
19. SAMPLE \& HOLD CIRCUIT

The block eliminates a high frequency noise called as "Glitch" which appears at the end of the stepped waveform.

When signal SH from Master LSI is " H ", the switch X in TC4053 is contacted with the terminal $O X$. This causes the input signal to pass through. At this time, the voltage level of the waveform is charged in the Hold Capacitor.
On the other hand, while a glitch appears on the waveform, the switch X is contacted with the terminal IX. This results in cutting off the glitch. Although no signal comes out of TC4053, the input of the opamp keeps the same voltage level by discharging of the Hold Capacitor.
Sampling or holding the slave waveform is performed by the same procedures using signal SH from Slave LSI and switch Z.

20. STEREO CHORUS CIRCUIT

Function of Each Block:
Filter A - Smoothes the stepped waveform of Samle \& Hold Circuit output signal.
Filter B - As the BBD does not pass signals which exceed 20 KHz , this block is a low-pass filter whose cutoff frequency is 20 KHz .

Compressor - In accordance with input signal level, this block controls the amplitude. When the input signal is small, the circuit amplifies the signal whereas the amplitude becomes smaller when the input is a large-level waveform. The block is used for reducing the noise.

Three-Phase LFOs - Generates low-frequency triangle signals of 0.54 Hz and 6.1 Hz . The three outputs differ 120 degrees in phase.

VCOs - Voltage Controlled Oscillator which generates the clock pulses for the BBDs. Their oscillation frequencies vary in accordance with the input voltage level.

BBDs

Filter C

Expander

- Functions contrary to the Compressor. This circuit is also used for reducing the noise.

20-1. Three-Phase LFO (Low Frequency Oscillator)

The left figure shows three inverters serially connected. If " L " level input enters the circuit, the output becomes " H " level. Because of the transfer characteristic of the inverter, the inverted input voltage appears on the output with a time lag. Hence, the circuit oscillates and the oscillation frequency is determined by the time lag.

The following shows the actual circuit of the Three-Phase LFO. The time lag is controlled by the parallel connected capacitor and the resistors.
Model CZ-5000 employs two LFOs whose oscillation frequencies are 0.54 Hz and 6.1 Hz . The output differs 120 degrees in phase.

Both 0.54 Hz and 6.1 Hz triangle waveforms are mixed to give variational delays of the sound in the BBD.

The 0.54 Hz and 6.1 Hz waveforms are mixed in the ratio of $10: 1$ as they pass through 18 Kohm and 180 Kohm resistors, respectively.

20-2. VCO (Voltage Controlled Oscillator)

The VCO is an oscillator whose oscillation frequency varies in accordance with the input voltage level.

In the left figure, the voltage levels of the A-OUT and the B-OUT are opposite.
(1) When A-OUT is " H ", B-OUT drops to " L ".
(2) From A-OUT, electric current flows into B-IN via a differentiation circuit.
As a result, the voltage of B-IN drops gradually while the $\mathrm{A}-\mathrm{IN}$ voltage gradually rises.

(3) When B-IN becomes lower than the threshold level, B-OUT rises to " H ".
When A-IN becomes higher than the threshold level, A-OUT drops to "L".
(4) The circuit oscillates repeating the above operations.

The following shows the actual circuit of VCO. When control terminal (A) is GND (zero volt), it takes approximately 15 microseconds for the differentiation circuit to reach the threshold voltage.

When the voltage of (A) is 2 volts, it takes only 9 microseconds to reach the threshold level.

As VCO receives a triangle waveform from the Three-Phase LFO, it oscillates from 55.6 KHz to 33.3 KHz in accordance with the voltage level of LFO output.

20-3. BBD (Bucket Brigade Device)

The BBD contains serial-connected delay elements. The input signal is shifted one step per one clock pulse.
The clock pulse is generated in the VCO , and as it varies from 33.3 KHz to 55.6 KHz , the delay time varies.

Model CZ-5000 employs three BBDs in order to give better stereo effect.

20.4. Compressor and Expander Circuits

If a sound signal passes through the BBD, a noise is carried on the signal especially when the input level of the signal is low.

Compressor When the level of input signal is low, the amplitude is large. If the input level is high, the amplitude decreases.

Expander
When the level of input signla is low, the amplitude is small. The amplitude increases when the input level is high.

When a low signal does not pass through the Compressor and the Expander;

When a low signal passes through the Compressor and the Expander;

Thus, the S / N ratio of the circuit is heightened.

21. VOLUME CONTROL CIRCUIT

Electric current from pedal and main volume controls are amplified by transistors T 4 and T 3 , respectively, and become the base current of transistor T2. Collector current of T2 is applied to NJM13600's control terminals.
NJM13600 is a power amplifier with control terminals.
In accordance with the amount of the current applied to pins 1 and 16, the amplitude of the amplifier varies.
22. RESET CIRCUIT

23. MIDI \& MT INTERFACE CIRCUITS

23-1. MIDI Interface Circuit

MIDI (Musical Instrument Digital Interface) is an international standard for the external control of electronic musical instruments. In other words, standardized input and output terminals are equipped with musical instruments, rhythm machines, sequencers, etc. and the music information which the machines send and receive via these terminals is made compatible by certain formatting This standard enables a musical instrument to connect, synchronize, and sequence (memorize) to other models and even to other brands.

Serial data information from other instruments comes in from the MIDI-IN terminal and enters into MAIN CPU's PC1 terminal via photo coupler PC900. The CZ-5000 is not thus electrically connected with any external instruments; which causes electric noises to be cut off. MAIN CPU transmits MIDI data from PCO terminal.

Digital data of 1 and 0 are recorded on magnetic tape as 2.4 KHz and 1.2 KHz sound, respectively.
When data is read, a signal from a cassette tape player comes in from MT terminal pin 5 .
As the voltage level varies depending on cassette tape players, the two zener diodes cramp the signal between 0 and +5 volts.
The cramped waveform is amplified by the first opamp. The second stage opamp is a comparator which examines whether the input voltage is higher or lower than 2.5 V and outputs a square waveform to MAIN CPU's PC3 terminal.
As 5 volts of MAIN CPU's PB1 terminal is too high for a cassette tape recorder, it is dropped to 34 millivolts by the 100 Kohm and 680 ohm resistors.
Signal PB4 from MAIN CPU turns on and off the remote control relay which controls the motor in a cassette tape player.
24. ADJUSTMENT

24-1. DAC Offset Voltage

(1) Connect a digital voltmeter between pin 13 or 19 of DAC BA9221 and pin 7 of opamp TL082-3.
(2) While the test unit is not producing any sound, adjust VR2 on PCB M5153-MA1M so that the voltmeter reading is $0 \pm 3 \mathrm{mV}$.

24-2. Volume Adjustment

(1) Keep pressing "INITIALIZE" button, depress "DC01 WAVEFORM", "DC01 ENVELOPE", "DCW1 KEY FOLLOW", DCW1 ENVELOPE", DCA1 KEY FOLLOW" and "DCA1 ENVELOPE" buttons.
(2) Depress "DCW1 ENVELOPE" and then "END" buttons.
(3) Choose $1+1$ ' by "LINE SELECT" button.
(4) Set the volume control to its maximum and the stereo chorus volume to its minimum.
(5) Connect a digital voltmeter between the ground and LINE-OUT terminal (either left or right output).
(6) Depressing a key, adjust 50K VR on the PCB M5153-AS1M so that the voltmeter reading is 360 mV (510 mV when an oscilloscope is used for checking the voltage).

PARTS LIST

MPL. 042

CZ-5000 (MX-153)

Note: 1. Prices and specifications are subject to change without notice.
2. As for spare parts order/supply, refer to the separate publication, "GUIDEBOOK for Spare Parts Supply".

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen（ $¥$ ） （FOB：JAPAN）	R A N K
		1）MA1M PCB ASS＇Y					
4	20010525	C－MOSIC	MB64H173	1			A
π	20011092	LSI	HN61364P－E39	1			A
	20020971	LSI	μ PD933D	2			A
白	20021128	LSI	$\mu \mathrm{PD} 7811 \mathrm{G}-180$	1			A
\％	20021136	LSI	$\mu \mathrm{PD} 7811 \mathrm{G}-204$	1			A
5	20091235	LSI	HM6264LP－15	2			
	21003808	C－MOSIC	TC4053BP	1			A
	21003841	LSI（RAM）	TC5516AP	3			A
	21004029	C－MOSIC	TC4051BP	1			A
	21004472	C－MOSIC	TC74HCU04P	2			A
4	21004642	C－MOSIC	TC53257P－1255	1			
	21103756	IC	SN74LS04N	1			A
	21112178	IC	SN74LS74AN	2			A
	21112194	IC	SN74LS138N	2			A
	21112283	IC	SN74LS08N	1			A
	21112496	IC	SN74LS174N	2			A
	21112615	IC	SN74LS05N	1			A
［s	21209341	IC	TL082	3			A
立	21220221	D／A converter	BA9221	1			A
	21841014	IC	HD74LS154P	2			A
	25203194	Crystal oscilator	HC－18／U－8960kHz	1	10		B
\％	25203224	Crystal oscillator	HC－18／U－12MHz	1	10		B
	27202519	Module resistor	MS3329	1	10		C
	27202811	Module resistor	MS4736	2	10		C
	27202837	Module resistor	MS3326	1	10		C
	27602177	Trimmer VR	V8K4－11B10K	1	10		B
\％	27602258	Trimmer VR	V8K4－118200	1	10		B
s	28056273	Electrolytic capacitor	SMC6．3VB－470（M）	1	10		C
	35003371	Connector 2P	IL－G－2P－S3T2－E	2	10		\times
	35003428	Connector 9P	IL－G－9P－S3T2－E	2	10		x
	35007032	P．C．board connector	5229－13－CPB	1	10		x
	35007041	P．C．board connector	5229－17－CPB	1	10		x
宜	35007059	P．C．board connector	5229－23－CPB	1	10		x
	35007491	P．C．board connector	IL－G－14P－S3T2－E	1	10		x
	35007505	P．C．board connector	IL－G－6P－S3T2－E	2	10		x
古	35008169	P．C．board connector	ZC－026	1	10		x

Note： －New part
Q＇ty－Quantity used per unit
＊－Minimum order／supply quantity

Rank A ：Essential
B ：Stock recommended
C ：Others
X ：No stock recommended

Item	Code No.	Part Name	Specification	Q'ty	*	Unit Price J.F. Yen ($¥$) (FOB: JAPAN)	R A N K
\%	35110933	P.C. board connector	5229-12CPB	1	10		x
	37307301	Parallel wire M153	2468-7-230	1	10		X
	22003721	Transistor	2SA933-SQ	5	10		B
	22201395	Transistor	2SC1740SQ	6	10		B
	23013002	Diode	DS-442	6	10		C
	23103265	Zener diode	RD5.6E(B2)	1	10		B
	23103338	Zener diode	RD3.3E(B2)	1	10		B
	26007313	Carbon film resistor	R-25-10K-J	10	10		C
	26009715	Carbon film resistor	R-25-100K-J	1	10		C
	26007712	Carbon film resistor	R-25-15K.J	3	10		C
	26005515	Carbon film resistor	R-25-1.8K-J	1	10		C
	26010918	Carbon film resistor	R-25-330K-J	1	10		C
	26006716	Carbon film resistor	R-25-5.6K-J	4	10		C
	26006911	Carbon film resistor	R-25-6.8K-J	5	10		C
	26002516	Carbon film resistor	R-25-100-J	2	10		C
	26003717	Carbon film resistor	R-25-330-J	1	10		C
	26004314	Carbon film resistor	R-25-560-J	2	10		C
	26004918	Carbon film resistor	R-25-1K-J	90	10		C
	26012112	Carbon film resistor	R-25-1M-J	3	10		C
	26005710	Carbon film resistor	R-25-2.2K-J	2	10		C
	26008115	Carbon film resistor	R-25-22K-J	1	10		C
	26003318	Carbon film resistor	R-25-220-J	2	10		C
	26006112	Carbon film resistor	R-25-3.3K-J	25	10		C
	26009316	Carbon film resistor	R-25-68K-J	1	10		C
	26007119	Carbon film resistor	R-25-8.2K-J	1	10		C
	26004713	Carbon film resistor	R-25-820-J	2	10		C
	26001714	Carbon film resistor	R-25-47-J	1	10		C
	26007518	Carbon film resistor	R-25-12K-J	2	10		C
	26009910	Carbon film resistor	R-25-120K-J	2	10		C
	26010713	Carbon film resistor	R-25-270K-J	2	10		C
	26006511	Carbon film resistor	R-25-4.7K-J	1	10		C
	26005914	Carbon film resistor	R-25-2.7K-J	1	10		C
	26005116	Carbon film resistor	R-25-1.2K-J	1	10		C
	26004110	Carbon film resistor	R-25-470-J	1	10		C
	26000912	Carbon film resistor	R-25-22-J	1	10		C
	00028722	Carbon film resistor	R-25-5K-J	5	10		C
	28080387	Electrolytic capacitor	SMC50VB-2R2(M)	1	10		C
	28055064	Electrolytic capacitor	SMC50VB-R1(M)-T	3	10		C

Note: - New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B: Stock recommended
C: Others
X: No stock recommended

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen（ $¥$ ） （FOB：JAPAN）	R A N K
4	28045051	Electrolytic capacitor	16RE10	1	10		C
	00028720	Electrolytic capacitor	6．3RE2－470	4	10		C
	28081014	Electrolytic capacitor	SMC50VB－1MBP－T	3	10		C
	28056389	Electrolytic capacitor	SMC16VB－10（M）	7	10		C
	28081111	Electrolytic capacitor	SMC16VB－100（M）－T	1	10		C
	28081138	Electrolytic capacitor	SMC16VB－33（M）－T	1	10		C
	28180055	Ceramic capacitor	HE40SJYB221K	8	10		C
	28186191	Ceramic capacitor	HE40SJSL220K	1	10		C
	28182040	Ceramic capacitor	HE70SJYF103Z	25	10		C
क	28182414	Ceramic capacitor	RT－HE40TKSL－ $560 \mathrm{~K}-\mathrm{T}$	1	10		C
	28183097	Ceramic capacitor	HE40SJCH220J	2	10		C
\％	00028705	Ceramic capacitor	HE11SJSL681K	1	10		
	28186045	Ceramic capacitor	HE40SJSL680K	1	10		C
	28203080	TF capacitor	ECQ－V1H－104－JZ	2	10		C
定	00028709	TF capacitor	ECQ－B1H333KHW	1	10		C
\％	00028710	TF capacitor	ECO－B1H562KHW	2	10		C
\％	43073320	PCB－M5153－MA1M	M1658－1	1			X
		2）MA2M PCB ASS＇Y					
它	20021144	IC	$\mu \mathrm{PC} 1571 \mathrm{C}$	2			A
	21003662	MOS IC	TC4069 $\mu \mathrm{BP}$	3			A
	21007692	MOS IC	MN3209	3			A
	21210013	OP AMP	NJM4558DD	3			A
	28080298	Electrolytic capacitor	SMC16VB－470（M）	1	10		C
	35003428	Connector 9P	IL－G－9P－S3T2－E	1			x
的	35008177	6P connector M153A	IL－6P－10－M153	1			x
	38410661	Low pass filter	LPF－M152－17K	1			B
	22201395	Transistor	2SC1740SO	4	10		B
	23013002	Diode	DS－442	10	10		C
	26007313	Carbon film resistor	R－25－10K－J	6	10		C
	26007712	Carbon film resistor	R－25－15K－J	5	10		C
	26007917	Carbon film resistor	R－25－18K－J	5	10		C
	26008514	Carbon film resistor	R－25－33K－J	6	10		C
	26008719	Carbon film resistor	R－25－39K－J	2	10		C
	26009111	Carbon film resistor	R－25－56K－J	4	10		C
	26004918	Carbon film resistor	R－25－1K－J	9	10		C
	26010314	Carbon film resistor	R－25－180K－J	6	10		C
	26005710	Carbon film resistor	R－25－2．2K－J	1	10		C
Note：is－New part Q＇ty－Quantity used per unit ＊－Minimum order／supply quantity			Rank	A：Essential B：Stock recommended C：Others X：No stock recommended			
			．				

Item	Code No.	Part Name	Specification	Q'ty	*	Unit Price J.F. Yen ($¥$) (FOB: JAPAN)	R A N K
	26008115	Carbon film resistor	R-25-22K-J	15	10		C
	26010519	Carbon film resistor	R-25-220K-J	3	10		C
	26008310	Carbon film resistor	R-25-27K-J	5	10		C
	26006112	Carbon film resistor	R-25-3.3K-J	2	10		C
	26011116	Carbon film resistor	R-25-390K-J	1	10		C
	26008913	Carbon film resistor	R-25-47K.J	6	10		C
	26009316	Carbon film resistor	R-25-68K-J	3	10		C
	26009910	Carbon film resistor	R-25-120K-J	1	10		C
	26010110	Carbon film resistor	R-25-150K-J	9	10		C
	26011515	Carbon film resistor	R-25-560K-J	3	10		C
	26006511	Carbon film resistor	R-25-4.7K-J	3	10		C
	26009511	Carbon film resistor	R-25-82K-J	1	10		C
	26016398	Carbon film resistor	R-25-6.8M-J	1	10		C
	28055013	Electrolytic capacitor	SMC16VB-47(M)-T	2	10		C
	28049013	Electrolytic capacitor	50 RNBBP 1	6	10		C
	28045051	Electrolytic capacitor	16RE10	1	10		C
	28081014	Electrolytic capacitor	SMC50VB-1MBP-T	2	10		C
	28080310	Electrolytic capacitor	SMC50VB-1 (M)	7	10		C
	28081049	Electrolytic capacitor	SMC50VB-3R3(M)	4	10		C
	28056389	Electrolytic capacitor	SMC16VB-10(M)	8	10		C
	28056117	Electrolytic capacitor	SMC25VB-10(M)	6	10		C
	28180110	Ceramic capacitor	HE50SJYB102K	3	10		C
	28182040	Ceramic capacitor	HE70SJYF103Z	9	10		C
*	00028706	Ceramic capacitor	HE60SJSL181K	3	10		C
	28190280	Ceramic capacitor	HE60SJSL151K	2	10		C
	28183259	Ceramic capacitor	HE11SJCH221J	6	10		C
	28186053	Ceramic capacitor	HE50SJSL101K	2	10		C
\%	00028711	TF capacitor	ECQ-B1H102KHW	3	10		C
4	00028708	TF capacitor	ECQ-B1H103KHW	1	10		C
公	00028712	TF capacitor	ECQ-B1H222KHW	1	10		C
$\stackrel{\text { ar }}{ }$	00028713	Mylar capacitor	ECQ-B1H822KHW	3	10		C
尔	00028714	TF capacitor	ECQ-B1H123KHW	3	10		C
क	00028715	TF capacitor	ECQ-B1H183KHW	1	10		C
\#	00028716	Mylar capacitor	ECQ-B1H182KHW	2	10		C
A	43073310	PCB-M5153-MA2M	M1659-1	1	10		X

Note: ~ - New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B : Stock recommended
C: Others
X: No stock recommended

Note: - New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B : Stock recommended
C: Others
X: No stock recommended

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen (\neq) （FOB：JAPAN）	R A K K
म	37210481	PC joiner M153G	PCJ－JPSS－12－200	1			B
म	37210490	PC joiner M153M	PCJ－JPSS－18－200	1			B
म	37210503	PC joiner M153L	PCH－JPSS－20－330	1			B
动	37210511	PC joiner M153H	PCJ－JPSS－27－175	1			B
	60020248	Joiner holder G545	P4260－1	2			X
	26004918	Carbon film resistor	R－25－1K－J	9	10		C
	28182040	Ceramic capacitor	HE70SJYF103Z	9	10		C
＊${ }^{\text {a }}$	43073250	PCB－M5153－MA4M	M1671－1	1			X
		5）CN1M PCB ASS＇Y					
\％	34101710	Push switch	KHC10902	46	10		B
尔	37210449	PC joiner M153E	PCJ－UV－23－180	1			B
家	37210457	PC joiner M153J	PCJJPSS－15－30	1			B
	62302348	Joiner holder E71	E41620A－1	1			X
	23013002	Diode	DS－442	46	10		C
	23209811	LED	LN266RPT	45	10		B
	26003911	Carbon film resistor	R－25－390－J	31	10		C
$\hat{\sim}$	43073270	PCB－M5153－CN1M	M1660－1	1			x
		6）CN2M PCB ASS＇Y					
	21210013	OP amp	NJM4558DD	1			A
	27709605	Variable resistor	EWA－NF0X05B14	1	10		B
	27709761	Slide VR	EWA－NA1X05B54	1			B
น	34101701	Push switch	KHC10902	36	10		B
\％	35008142	4P connector M153	IL－4P－40－M153	1			X
㐫	35008185	9P connector M153B	IL－9P－32－M153	1			x
\％	35008193	5P connector M153B	IL－5P－24－M153	1			x
令	35008231	3P connector M153A	IL－3P－30－M153	1			x
	23013002	Diode	DS－442	37	10		C
	23209811	LED	LN266RPT	27	10		B
	26007313	Carbon film resistor	R－25－10K－J	1	10		C
	26007712	Carbon film resistor	R－25－15K－J	5	10		C
	26007917	Carbon film resistor	R－25－18K－J	2	10		C
	26003911	Carbon film resistor	R－25－390－J	14	10		C
	26004918	Carbon film resistor	R－25－1K－J	2	10		C
	26010110	Carbon film resistor	R－25－150K－J	1	10		C
	28190280	Ceramic capacitor	HE60SJSL151K	1	10		C
［ 2	43073220	PCB－M5153－CN2M	M1661－1	1			X

Note：मे－New part
Q＇ty－Quantity used per unit
＊－Minimum order／supply quantity

Rank A：Essential
B：Stock recommended
C：Others
X：No stock recommended

Note: is - New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B : Stock recommended
C: Others
X: No stock recommended

Note: ~ New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B : Stock recommended
C: Others
X: No stock recommended

Item	Code No.	Part Name	Specification	Q'ty	*	Unit Price J.F. Yen ($¥$) (FOB: JAPAN)	R A N K
	23104539	Zener diode	RD5.6EL2	2	10		B
云	23105276	Zener diode	RD8.2EL2	1	10		B
म	23107456	Zener diode	RD6.2EL1	1	10		B
	23301075	Diode	S4VB10	1	10		B
	26001315	Carbon film resistor	R-25-33-J	1	10		C
	26002516	Carbon film resistor	R-25-100-J	2	10		C
	26005116	Carbon film resistor	R-25-1.2K-J	1	10		C
	26005311	Carbon film resistor	R-25-1.5K-J	1	10		C
	26005515	Carbon film resistor	R-25-1.8K-J	1	10		C
	26005710	Carbon film resistor	R-25-2.2K-J	1	10		C
	26009715	Carbon film resistor	R-25-100K-J	1	10		C
	26012911	Carbon film resistor	R-25-10-J	1	10		C
	26204313	Carbon film resistor	R-50X-560-J	1	10		C
	26302510	Carbon film resistor	R-1W-100-J	1	10		C
	26313210	Carbon film resistor	R-1W-0.47-J	2	10		C
\% 4	28045841	Electrolytic capacitor	16RE2-4700	1	10		C
\%	28045859	Electrolytic capacitor	35RE2-1000	2	10		C
\%	28056273	Electrolytic capacitor	SMC6.3VB-470(M)	3	10		C
	28080271	Electrolytic capacitor	SMC10VB-220(M)	3	10		C
	28080280	Electrolytic capacitor	SMC25VB-220(M)	1	10		C
	28080298	Electrolytic capacitor	SMC16VB-470(M)	2	10		C
	28080310	Electrolytic capacitoe	SMC50VB-1 (M)	1	10		C
	35003355	Pin ass'y 3P	IL-G-3P-S3T2-E	1	10		X
4	35007610	Pin ass'y 5P	IL-G-5P-S3T2-E	1	10		X
	35008215	9P connector M153C	IL-9P-70-M153	1			X
	36402357	Fuse clip	UF-0033\#01	6	10		x
क	43073260	PCB-M5153-PS2M	M2973-1	1			x
$\stackrel{3}{4}$	69046380	Heat sink 153	M42191-1	1			X
\%	69046410	Heat sink	M42301-1	1			X
		11) IF PCB ASS ${ }^{+}$					
	35106481	P.C.B. connector	$\begin{aligned} & \text { PS30PE-S4LT1 } 1 \\ & \text { PN1** } \end{aligned}$	1			x
的	37208761	PC joiner	SMCD-26-140	1			B
	43072960	PCB-M4150-IF	M31576-1	1			X
	60020248	Joiner holder G545	P4260-1	1			X

Note: \Rightarrow - New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B : Stock recommended
C: Others
X: No stock recommended

Note: मे - New part
Q'ty - Quantity used per unit

* - Minimum order/supply quantity

Rank A: Essential
B: Stock recommended
C: Others
X: No stock recommended

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen（ $¥$ ） （FOB：JAPAN）	R A N K
4 令	39045210	Key D	M31568－1	5			C
5 파	69045220	Key G	M31569－1	5			C
6 म 7	69045230	Key S	M31570－1	1			C
7 站	69045240	Black key	M31571－1	25			C
8	69046350	Key stopper 61A	M42126－1	1			C
9	69046360	Upper case stopper	M42130－1	1			C
10 安	69016161	S felt 61C	M4925A－1	1			X
11\％	69045280	Rubber switch G	M31553－1	4			B
12\％	69045290	Rubber switch H	M31554－1	1			B
13	69045301	KB guide C	M31630A－1	4			X
14\％	69045311	KB guide D	M31631A－1	1			x
15安	00028827	$K B$ chassis	M2992－1	1			X
		17）WHEEL ASS＇Y					
16	27706843	Variable resistor	VM10W520A－50KB	2			B
17 \％	35008151	6P connector M153B	IL－6P－95－M153	1			X
18荿	69040420	Bender spring	M41737－1	1	50		B
19 号	69040430	Felting seal 71A	M41812－1	2	10		X
20＊	69046110	Bender knob 153	M31620－1	2	10		C
21 云	69046120	Bender chassis 153	M42128－1	2			x
22云	69115250	Bender chassis B	M41946－1	2			x
		18）RAM PACK CASE	SS＇Y				
23尔	69045950	RAM pack compartment upper case subass＇y	M31651＊1	1			x
24	69046090	RAM pack compartment lower case	M31621－1	1			X
25管	69046100	RAM pack house holder	M42129－1	1			x
26的	00028822	RAM pack cover	M31489－1	1			C
27 动	69115320	Shaft	M41948－1	1			x
28出	69115330	Spring	M41947－1	1	50		C
	00028824	PE washer	M41951A－1	2	50		C
		19）BATTERY BOX SUB	$A S S ' Y$				
30 约	35008258	2P connector M153A	IL－2P－40－M153	1			x
31	60006091	Battery spring G67	A43656－1	1	50		C
32	63249297	Battery spring C－G164	A43733－1	1	50		C

Note：\＆－New part
Q＇ty－Quantity used per unit
＊－Minimum order／supply quantity

Rank A：Essential
B ：Stock recommended
C：Others
X：No stock recommended

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen（ $¥$ ） （FOB：JAPAN）	R A N K		
33	63281560	Battery spring G49	A44683－1	1	50		C		
34	63452238	Battery spring A－G55	A42606A－1	1	50		C		
35 今	00028826	Battery box	M1303－3	1			C		
		20）SIDE BOARD SUBASS＇Y							
36	69040260	Rhythm button	M4498－11	1			C		
	69045820	Side board subass＇y（Left）	M31654＊1	1			C		
38ヶ	69045660	Side board subass＇y（Right）	M31652＊1	1			C		
		21）KEY TOP							
39 动	69048640	Key top／djd	M31623－6	1			C		
40	69048650	Key top／d d_{0}	M31623－7	1			C		
41\％	69048660	Key top／REST	M31623－8	1			C		
42出	69048670	Key top／－	M31623－9	1			C		
43出	69048680	Key top／	M31623－10	1			C		
44出	69048690	Key top／$\vdash^{3} \square$	M31623－11	1			C		
45号	69048700	Key top／ \mid \｜： \mid	M31623－12	1			C		
46出	69048710	Key top $/\\|\bullet \Pi:\\|^{\text {® }}$	M31623－13	1			C		
47分	69048720	Key top／A	M31623－14	2			C		
48令	69048730	Key top／B	M31623－15	2			C		
49 \％	69048740	Key top／C	M31623－16	2			C		
50 江	69048750	Key top／D	M31623－17	2			C		
51 m	69048760	Key top／ 1	M31623－18	1			C		
52 하	69048770	Key top／ 2	M31623－19	1			C		
53号	69048780	Key top／ 3	M31623－20	1			C		
54尔	69048790	Key top／ 4	M31623－21	1			C		
55.	69048800	Key top／ 5	M31623－22	1			C		
56 场	69048810	Key top／ 6	M31623－23	1			C		
57的	69048820	Key top／ 7	M31623－24	1			C		
58出	69048830	Key top／ 8	M31623－25	1			C		
59 的	69048840	Key top／Wave form	M31623－26	2			C		
60的	69048850	Key top／ENV	M31623－27	6			C		
61 的	69048860	Key top／Key follow	M31623－28	4			C		
62安	69048870	Key top／Porta－Mento	M31623－29	1			C		
63家	69048880	Key top／Glide	M31623－30	1			C		
64 家	69048890	Key top／Detune	M31623－31	1			C		
65曻	69048900	Key top／Key transpose	M31624－7	1			C		

Note：मे－New part
Q＇ty－Quantity used per unit
＊－Minimum order／supply quantity

Rank A：Essential
B：Stock recommended
C：Others
X：No stock recommended

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen（ $¥$ ） （FOB：JAPAN）	R A N K
66吘	69048910	Key top／Normal	M31624－8	1			C
67\％	69048920	Key top／Tone mix	M31624－9	1			C
68贸	69048930	Key top／Key split	M31624－10	1			C
69部	69048940	Key top／Solo	M31624－11	1			C
70\％	69048950	Key top／MIDI	M31624－12	1			C
71 留	69048960	Key top／V（Value／Save）	M31624－13	1			C
72 站	69048970	Key top／ $\boldsymbol{\Delta}$（Value／Load）	M31624－14	1			C
73立	69048980	Key top／＜（Consor／No）	M31624－15	1			C
74 $\%$	69048990	Key top／（Consor／Yes）	M31624－16	1			C
75 出	69049000	Key top／－Down	M31624－17	1			C
76\％	69049010	Key top／© UP	M31624－18	1			C
77 立	69049020	Key top／Sustain	M31624－19	1			C
78 玄	69049030	Key top／End	M31624－20	1			C
79动	69049040	Key top／MT	M31624－21	1			C
80 的	69049050	Key top／Cartridge	M31624－22	1			C
81 的	69049060	Key top／Porta－Mento	M31624－23	1			C
82 的	69049070	Key top／Glide	M31624－24	1			C
83云	69049080	Key top／Bend range	M31624－25	1			C
84的	69049090	Key top／Modulation depth	M31624－26	1			C
85 m	69049100	Key top／Ring	M31624－27	1			C
86 的	69049110	Key top／Noise	M31624－28	1			C
87 的	69049120	Key top／Delete	M31624－29	1			C
88动	69049130	Key top／VDown	M31624－30	1			C
89 的	69049140	Key top／ $\mathbf{\Delta U p}$	M31624－31	1			C
90 的	69049150	Key top／Repeat	M31624－32	1			C
91 矿	69049160	Key top／Real time	M31624－33	1			C
92完	69049170	Key top／© Manual	M31624－34	1			C
93 䏣	69049180	Key top／Reset	M31624－35	1			C
94碞	69049190	Key top／＜R Rev	M31624－36	1			C
95	69049200	Key top $/>$ FWD	M31624－37	1			C
96 令	69049210	Key top／Play	M31624－38	1			C
97 珱	69049220	Key top／－Stop	M31624－39	1			C
98站	69049230	Key top／Compare／Recall	M31624－40	1			C
99安	69049240	Key top／Track check	M31624－41	1			C
100 吹	69049250	Key top／Write	M31624－42	1			C
101＊	69049260	Key top／O Record	M31624－43	1			C
102 会	69049270	Key top／Master tune	M31624－44	1			C
103 会	69049280	Key top／Sequencer	M31624－45	1			C
Note：合－New part Q＇ty－Quantity used per unit ＊－Minimum order／supply quantity				A：			
				$\begin{aligned} & \mathrm{B}: \\ & \mathrm{C}: \\ & \mathrm{X}: \end{aligned}$		ommended recommended	

Item	Code No．	Part Name	Specification	Q＇ty	＊	Unit Price J．F．Yen（ $¥$ ） （FOB：JAPAN）	R A N K
104너	69049290	Key top／Line select	M31624－46	1			C
105	69049300	Key top／Vibrato	M31624－47	1			C
106＊	69049310	Key top／Octave	M31624－48	1			C
107ヶ	69049320	Key top／Initialize	M31624－49	1			C
		22）UPPER／LOWER CASE					
108；	69045730	Upper case subass＇y	M31670＊ 1	1			c
109 㣍	69045740	Upper panel subass＇y （with key top set）	M1692＊ 1	1			C
110 ${ }^{\text {ct }}$	69026250	Blind plate（for slide volume）	M41215－1	2	（10）		c
111住	69046140	DIN jack holder 153	M31619－1	1			C
112絡	69046420	UL cover	M42302－1	1			C
113	69045670	Lower case subass＇y	M21015＊1	1			C
		23）OTHERS					
114	69014240	Battery cover	M3615－2	1			C
115＊	69016470	Transformer holder	M4887－1	2			X
116	69040050	Power switch knob	M41093－3	1			C
［	69046150	Case stopper rubber	M42190－1	1	10		C
117	69046160	VR knob 153	M31622－1	2	10		C
4	69202270	Clip	CS－5	1	10		C
$\stackrel{\rightharpoonup}{*}$	69046430	Dust cover	M31736－1	1			C
	37009491	Plug cord set	6．3MPP－L300－H－9	1			C

Note：$\hat{\text { b }}$－New part
Q＇ty－Quantity used per unit
＊－Minimum order／supply quantity

Rank
A：Essential
B ：Stock recommended
C：Others
X：No stock recommended

[^0]: $\mathrm{G} 2=\mathrm{G} 2 \mathrm{~A}+\mathrm{G} 2 \mathrm{~B}$
 $H=$ high level, $L=$ low level, $X=$ irrelevant

